介绍:
- 1、复杂难处理稀有、稀土、贵金属提取技术体系
- 2、黄金提炼方法
- 3、黄金首饰回收近期价格高吗,什么时候出手比较好?
- 4、金的冶炼方法?
- 5、金属垃圾的种类,及其回收价值,回收建议
- 6、电解法处理回收贵金属的工艺流程图。
复杂难处理稀有、稀土、贵金属提取技术体系
主要包括难处理锂、铌钽多金属共生矿、细粒难选金红石矿、贵金属矿(金矿和铂钯矿等)的开发利用技术。我国难处理金矿资源比较丰富,现已探明的黄金地质储量中,约有1000吨左右属于难处理金矿资源,约占探明储量的1/4。研究新型组合捕收剂和有效抑制碳吸附金的组合碳抑制剂,排除碳的干扰和消除碳的“劫金”能力;在较低的压力和温度条件下的催化氧化浸出新工艺和新药剂,有效浸出金;难处理金矿无毒浸金药剂开发技术;研究无害化处理砷或有效回收砷矿物的新工艺技术,变有害为有利,寻找出适宜于这类金矿有效开发利用的合理技术途径。推广循环流态化床(GFB)技术焙烧难处理金矿,其工艺过程可以极好地得到控制;能充分地烧去硫和碳;焙烧工艺投资成本降低,金回收率大大提高(一般金总回收率提高5%~15%),可实现清洁焙烧的效果。开发推广复杂难处理矿石的加压(常压)催化氧化浸出技术是环境清洁的生产工艺。可以用于处理含砷碳复杂金精矿等物料。我国在生物冶金、金矿预处理技术方面也取得了长足的发展,建立起几个工业试验示范点,推动了我国在这一技术领域的进步和发展,但总体上与世界主要矿业大国的差距较大。当前应重点针对我国低品位原生硫化矿和难处理的硫化物精矿,解决浸矿速度慢与浸出率低的难题,培育驯化高效浸矿菌种,开展过程强化、高效及规模化生产工程等关键技术的研究,形成较完整的成套技术,为我国难处理资源的高效、低成本开发利用提供新的技术途径。我国的铂钯矿资源较为紧缺,应加强铂钯硫化物的富集技术、铂钯精矿浸出技术、高锍中铂钯的富集和提纯新工艺流程的研究。
我国的花岗伟晶岩含锂铌钽稀有多金属矿床,主要锂矿物有锂辉石、锂云母、磷锂石、透锂长石等,品位高,储量大,并伴生有铍、铌、钽等有用组分。我国钽铌矿床主要有花岗岩钽铌矿床和高温沉积变质矿床。花岗伟晶岩矿床一般有用矿物颗粒比较粗大,共生矿物有锂辉石等。花岗岩钽铌矿床是我国重要的钽铌矿床工业类型,特点是矿体规模大,钽铌矿物粒度较细,其中铌铁矿——钽铌铁矿型花岗岩矿床,钽铌铁矿和铌铁矿是我国铌铁矿的主要来源;钽铌锰矿——细晶花岗岩矿床储量大,品位较高,是铍、锂、铷、锆、铪、锡、钨的多种稀有金属的综合矿床;钽铌铁矿——钽铌锰矿型花岗岩以含钽铌铁矿、钽铌锰矿为主,其次有少量细晶石,共生矿物有黑钨矿、锡石、富铪锆石等,也是目前国内钽铌主要来源之一;沉积变质高温热液交代矿床,储量很大,但钽铌矿物结晶很细,部分呈类质同象或微细颗粒包裹于其他矿物中,选矿回收困难。我国的金红石矿产资源虽然丰富,但具有较高工业价值的矿床却很少,已发现的原生金红石矿成矿区面积很大,但矿石品位低,其储量占全国金红石资源总量的86%,矿石结构致密、粒度细,可选性差、回收率低,经常需要采用多种选矿工艺来提纯富集,如浮选、重选、磁选、电选,有的还需要焙烧或酸洗来提高精矿品位。由于选矿工艺流程长,加工成本高,产品缺乏市场竞争能力,总体规模和产量、质量都难以满足工业的需求。因此简化工艺,降低生产成本,提高选矿回收率和矿石综合利用水平是开发利用我国金红石资源的关键。这些资源的特点均要求加强综合利用技术研究。
我国稀土储量和产量均居世界首位。南方离子吸附型稀土是世界上少有的中、重稀土资源,与高新技术产业有密切关系。但由于乱采滥挖,采用落后的池浸工艺,回收率不到30%,资源浪费严重,没有发挥综合利用的价值同时也带来环境污染。努力完善和全面推广原地浸矿新工艺、离子型稀土冶炼技术及设备,是离子型稀土开发利用步入良性发展阶段的头等大事。我国稀土矿总量90%以上集中在包头的白云鄂博一矿,白云鄂博内生轻稀土铁矿床是含有铁、稀土、钍、铌、锰、磷、萤石等的多元素共生矿。目前开采的东矿是贫铁(品位34%)富稀土(品位5%)矿,稀土的利用率仅10%左右,大量稀土堆存于尾矿库,稀土氧化物(REO)约1000多万吨,以白云鄂博共生矿为代表的北方稀土矿应重点进行铌、锆、稀土的选冶联合分离技术、稀土氧化物清洁生产及资源综合回收利用工艺研究,提出合理、可行、经济、环保的选冶工艺。
黄金提炼方法
1、硝酸分离法
提炼黄金可以使用硝酸分离法,将浓硝酸倒入烧杯中,把需要提炼黄金的金属放入烧杯内。之后将烧杯放在烧杯架上,同时用酒精灯加热,之后就可以得到片状黄金。
2、王水分离法
此外提炼黄金也可以使用王水分离法,将一份硝酸和三份盐酸配置成王水后,把需要提炼的金属放入王水内,等金属反应结束后进行过滤。之后进行加热,最后放入铜片进行置换,同样可以将黄金提炼出来。
3、硫酸双氧水分离法
按照一比一的比例将硫酸和双氧水混合,再把需要提炼的技术放入硫酸双氧水溶液内,等金属反应结束后,得到的黄色金属物体就是黄金。
黄金提炼的原料
以前黄金提炼的原材料主要来源于金矿石,从金矿山开采出来的含金的矿石,其中还含其他贵金属。众所周知,黄金的应用面是相当广的,电子元件、首饰、电池、医用胶片、线路等,应用方面非常广。所以现在电子垃圾、首饰废料也都可以提炼黄金以及其他贵金属。
黄金精炼是批将金泥或合质金中的杂质去除,使金产品能够达到黄金交易质量标准要求的工艺。
黄金首饰回收近期价格高吗,什么时候出手比较好?
今天2021年12月2号黄金的价格是475每克左右,什么时候出手看你自己吧,反正黄金还是很保值的。
以下是金融黄金的价格:
周大福黄金475元/克。
周六福黄金476元/克。
六福珠宝黄金475元/克。
老凤祥黄金476元/克。
周生生黄金473元/克。
黄金是一种贵金属,黄金有价,且价值含量比较高,“金碧辉煌”、“真金不怕火炼”、“书中自有黄金屋”等赞美之词无不表达黄金在人们心目中的崇高位置。
扩展资料
金是金属王国中最珍贵的,也是最罕最有的一种。金属可分为两大类:铁质的(FERROUS)和不含铁质类(NONEFRROUS)。铁质类的金属包括纯铁和钢,都是产量较多和便宜的金属。不含铁质类可分为3组:贵重金属、基本金属和合金。制造首饰乃用不含铁质类的金属。金的质地纯净,拥有娇人的特性,是最受人们欢迎的金属。地质学家的分析报告指出,除了在1802年才发现的钽(TANTALUM)之外,金是史上最罕有的金属,这更证明金的罕有性。
金子的形成原因:
大约在二十六亿年前的太古代,火山喷发把大量的金元素,从地核中沿着裂隙,带到地幔和地壳中来,后经海洋沉积和区域变质作用,形成最初的金矿源.大约在一亿年前的中生代,因受强大力的作用,地壳变形褶,褶露出海面,金物质活化迁移富有集,形成金矿田,即我们所说的岩金。
在岩金富集地带,岩石氧化后往往留下许多自然金.地表浅层的岩金,经过数千万年的风化与剥蚀,岩石变为沙土.因金的性质稳定,因而被解离为单体,在河水的搬运过程中,又因其比重大,因而在河流的稳水处沉积下来,于是形成沙金矿。
金的冶炼方法?
分为火法冶炼、湿法提取或电化学沉积。
1、火法冶炼
又称为干式冶金,把矿石和必要的添加物一起在炉中加热至高温,熔化为液体,生成所需的化学反应,从而分离出粗金属,然后再将粗金属精炼。
2、湿式冶金
湿法冶金这种冶金过程是用酸、碱、盐类的水溶液,以化学方法从矿石中提取所需金属组分,然后用水溶液电解等各种方法制取金属。
3、化学反应
利用某种溶剂,借助化学反应(包括氧化、还原、中和、水解及络合等反应),对原料中的金属进行提取和分离的冶金过程。
扩展资料
当矿石含有天然金时,金会以粒状或微观粒子状态藏在岩石中,通常会与石英或如黄铁矿的硫化物矿脉同时出现。以上情况称为脉状矿床(Lode)、或是岩脉金。
天然金亦会以叶片、粒状或大型金块的形式出现,它们由岩石中侵蚀出来,最后形成冲积矿床的沙砾,称为砂矿,或是冲积金。
冲积金一定会比脉状矿床的表面含有较丰富的金,因为在岩石中的金的邻近矿物氧化后,再经过风化作用、清洗后流入河流与溪流,在那里透过水作收集及结合再形成金块。
金亦有时会以与其他元素,特别是碲形成化合物的形式出现。
例子有针状碲金矿(calaverite)、针碲金银矿(sylvanite)、叶碲矿(nagyagite)、碲金银矿(petzite)及白碲金银矿(krennerite)。金亦有极少机会与水银以汞齐形成出现,另外亦会以一个低浓度在海水出现。
参考资料来源:百度百科--冶炼
金属垃圾的种类,及其回收价值,回收建议
贵金属提炼方法 贵金属回收方法 贵金属生产技术工艺集锦
1 用细菌菌体从低浓度的钯离子废液中回收钯的方法 .1
2 高温合金的电化学分解方法 .8
3 合成碳酸二苯酯用负载型催化剂及其制备方法 .0
4 从贵金属微粒分散液中回收贵金属的方法 .0
5 从富含铜的电子废料中回收金属和非金属材料的工艺 .4
6 电子废料的贵金属再生回收方法 .1
7 含砷硫化铜精矿湿法冶炼新工艺 .6
8 一种从含有贵金属的废催化剂中回收贵金属的方法 .0
9 一种分离铂钯铱金的方法 .8
10 钯合金吸附网 .0
11 从废铝基催化剂回收贵金属及铝的方法和消化炉 .9
12 用键合到膜上的能束缚离子的配位体分离和浓缩某些离子的方法 .2
13 真空蒸馏提锌和富集稀贵金属法 .8
14 氰化金泥的全湿法精炼工艺
15 用萃取法回收废催化剂中的铂
16 铱的回收和提纯方法
17 用控制电位法从阳极泥提取贵金属
18 金属回收室
19 从精矿中回收贵金属的方法
20 催化剂回收方法
21 合成以聚硫醚为主链的胺型螫合树脂的新方法
22 低温硫化焙烧—选矿法回收铜、金、银
23 一种从含金王水中提取金的方法
24 用于处理氨的物质
25 贵金属的回收 .8
26 碱蒸发器白银代用法 .3
27 岩石风化土吸附型稀散贵金属的提取技术方案 .2
28 金属阳极再生前处理方法 .8
29 延性合金 .3
30 提选人造金刚石的改进工艺 .4
31 从难处理金矿中回收金、银 .X
32 一种从重砂中回收细粒金的方法 .4
33 电影胶片洗印厂污水中银的回收方法及装置 .4
34 从铜阳极泥中回收金铂钯和碲 .3
35 铜、锌络离子废水废渣净化处理方法 .6
36 从氧化合成反应产物中回收铑的方法 .9
37 回收贵金属和叔膦的方法 .9
38 板框式固定床电极电解槽及其工业应用 .2
39 回收贵金属 .3
40 第Ⅷ族贵金属的回收工艺 .6
41 从含碳矿物中回收金及其它贵金属的方法 .0
42 锡阳极泥提取贵金属和有价金属的方法 .8
43 催化裂化助燃剂制备方法 .3
44 从难处理矿石回收贵金属值的方法 .6
45 用硫代硫酸盐浸滤剂由贵金属矿中回收贵金属有用成分的湿法冶金方法 .9
46 用含氮和磷的双功能萃取剂提纯贵金属的新方法 .8
47 自含砷的难冶金矿中回收金银和雌黄的方法 .X
48 用溴酸盐和加合溴提取金的方法 .0
49 一种微量银废液回收银的方法 .4
50 从氯化银废液中回收银的方法 .2
51 改性石硫合剂提取贵金属的方法 .0
52 制备润滑基础油的方法 .8
53 多功能基螯合纤维的合成方法 .5
54 一种无氰解吸提金方法 .9
55 从硫化物矿中采用氯化物辅助水冶法提取镍和钴 .2
56 润滑基础油的制备方法 .8
57 加氢处理方法 .3
58 改性活性碳纤维还原吸附提取金属银 .1
59 吸附在活性炭上的贵金属的提取方法和系统 .4
60 一种用细菌吸附并还原水溶液中低浓度金离子的方法 .8
61 一种含氰溶液的净化工艺及其有价成份的回收方法 .X
62 微波预处理包裹型复合铂钯矿技术 .2
63 贵金属熔炼渣湿法冶金工艺 .5
64 一种处理低品位阳极泥的方法 .1
65 从废铑催化剂残液中回收金属铑的方法 .0
66 再生铅的冶炼方法 .3
67 从废物流中回收和分离金属的方法 .6
68 一种偕胺肟螯合功能纤维、其合成方法及其应用 .7
69 介孔二氧化钛光催化剂的制备方法 .7
70 贵金属和有色金属硫化矿复合浮选药剂 .6
71 有色金属硫化矿及含硫物料的还原造锍冶炼方法 .9
72 一种铅阳极泥的处理途径及处理工艺 .4
73 银电解液除铋、锑的方法 .X
74 环戊烯氧化法合成戊二醛的方法 .2
75 二氧化硫废气的净化处理方法 .2
76 高砷高硫金精矿脱除砷硫元素 .3
77 通过许多破碎/悬浮阶段从燃煤炉渣中回收贵金属 .9
78 啤酒花树脂酸的氢化方法 .0
79 带有多层振动网板电极的电解槽 .8
80 含贵金属废水回收处理装置
81 气液分离型非挥发性溶液浓缩装置
82 一种细粒金选矿溜板 .5
83 从高砷高硫金精矿中高回收率提金的预处理装置 .6
84 从废水中回收贵金属装置 .0
85 一种螺旋溜槽 .9
86 硝酸装置贵金属回收器 .1
87 制备4氨基二苯胺的方法 .3
88 便于分离和回收利用的贵金属纳米粒子的制备方法 .0
89 催化剂载体的选别处理方法 .X
90 从含银废液中回收银的方法 .3
91 合成对氨基酚用的负载型催化剂及其制备方法和使用方法 .5
92 一种具有还原功能螯合纤维的制备方法 .8
93 一种制备二氧化钛介孔材料的方法 .4
94 2,2’二氯氢化偶氮苯的制备方法 .6
95 一种烷基蒽醌加氢的方法 .2
96 一种用微波反应制备壬二酸的方法 .2
97 一种芳香族硝基化合物加氢还原方法 .6
98 一种脱除乙烯原料中少量乙炔的方法 .9
99 一种脱除碳四烷基化原料中双烯烃的方法 .4
100 提炼含贵金属的精矿的方法 .4
101 亚微米银铜合金粉末的制备方法 .7
102 2烷基3氨基噻吩衍生物的制造方法 .4
103 一种催化氧化体系制备壬二酸的方法 .9
104 新型高效贵金属吸附剂及其制备方法 .0
105 贵金属的无毒萃取提炼方法 .0
106 贵金属的无毒低成本提炼方法 .9
107 电镀生产线在线镍回收一体机 .X
108 从含氟的燃料电池组件中富集贵金属的方法 .6
109 一种聚酯废气的净化方法 .8
110 34二氯硝基苯加氢制备34二氯苯胺的催化剂的制备方法 .4
111 一种铁闪锌矿与闪锌矿的选矿活化剂 .7
112 一种从铜镍合金中富集铂族贵金属的方法 .X
113 重金属离子废水的趋磁性细菌分离装置 .1
114 从含氰、含硫氰酸盐溶液中再生氰化钠的方法 .8
115 苯酚氧化羰基化合成碳酸二苯酯的催化剂及其制备方法和应用 .3
116 湿法火法联合工艺回收废水中和渣中铜、镍及贵金属的方法 .7
117 从废氧化硅中回收吸附钯的方法 .9
118 从硫化物原料中回收金属的方法 .6
119 8羟基喹啉型螯合树脂及其合成方法 .3
120 焚烧废物的成套装置和废物的综合利用方法 .4
121 粗铋中有价金属回收工艺 .2
122 用于燃料电池的碳载铂基催化剂及其制备方法 .X
123 硅废弃片表面金属的去除和贵金属银铂金的回收方法 .3
124 从炼锑废渣回收金银铂贵金属的工艺 .8
125 电解氯或氯化物的浸出方法及其装置 .6
126 一种活性炭负载的钌催化剂的回收方法 .0
127 一种纳米多孔金属催化剂及其制备方法 .2
128 丙烯腈装置吸收塔尾气的催化氧化处理工艺 .5
129 含砷金精矿提金尾渣再提金银的方法 .7
130 含砷金精矿提取金银方法 .1
131 丙烯酸及酯类废油资源化处理方法 .5
132 从金属载体催化剂装置中回收贵金属的方法 .X
133 含有铜、贵金属的废料和/或矿泥的处理方法 .2
134 回收金的方法 .3
135 一种从贵锑合金中富集贵金属的方法 .3
136 微波辐照制备高比表面积活性炭的方法 .2
137 辐射接枝法制备聚乙烯离子螯合膜的方法 .X
138 用于多相氧化羰基化合成碳酸二苯酯的催化剂 .7
139 两段焙烧法从含砷碳金精矿中回收AuAgCuAsS生产工艺 .5
140 微细浸染型金矿封闭式预处理装置 .0
电解法处理回收贵金属的工艺流程图。
一、项目的背景
贵金属即金Au、银Ag、铂Pt、钯Pd、锶Sr、锇Os、铑Rh和钌Ru 八种金属。由于这些金属在地壳中含量稀少,提取困难,但性能优良,应用广泛,价格昂贵而得名贵金属。除人们熟知金Au、银Ag外,其他六种金属元素称为铂族元素(铂族金属)。
贵金属在地壳中的丰度极低,除银有品位较高的矿藏外,50%以上的金和90%以上的铂族金属均分散共生在铜、铅、锌和镍等重有色金属硫化矿中,其含量极微、品位低至PPm级甚至更低。
随着人类社会的发展,矿物原料应用范围日益扩大,人类对矿产的需求量也不断增加,因此,需要最大限度地提高矿产资源的利用率和金属循环使用率。由于贵金属的化学稳定性很高,为它们的再生回收利用提供了条件,加之其本身稀贵,再生回收有利可图。
二、贵金属回收利用概况
由于贵金属在使用过程中本身没有损耗,且在部件中的含量比原矿要高出许多,各国都把含贵金属的废料视作不可多得的贵金属原料,并给以足够的重视。且纷纷加以立法、并成立专业贵金属回收公司。
日本20世纪70年代就颁布了固体废物处理和清除法律,成立回收协会,至目前已从含贵金属的废弃物中回收有价金属20几种。
美国回收贵金属已有几十年的历史,形成回收利用产业,成立专门的公司,如阿迈克斯金属公司和恩格哈特公司,1985年就回收5吨铂族金属,1995年回收的贵金属增加到12.4~15.5吨。
德国1972年颁布了废弃管理法,规定废弃物必须作为原料再循环使用,要求提高废弃物对环境的无害程度。德国有著名的迪高沙公司和暗包岩原料公司都建有专门的装置回收处理含贵金属的废料。
英国有全球性金属再生公司—阿迈隆金属公司,专门回收处理各种含贵金属废料,回收的铂、钯、银的富集物就有上千吨。
我国的各类电子设备、仪器仪表、电子元器件和家用电器等随着经济发展和生活水平的提高,淘汰率迅速提高,形成大量的废弃物垃圾,不仅浪费了资源和能源,且造成严重的环境影响。随着时间的延续,更新的数量还会增加。如果作为城市垃圾埋掉、烧掉,必将造成空气、土壤和水体的严重污染,影响人民的身体健康。且电器设备的触点和焊点中都含有贵金属,应设法回收再利用。
三、生产工艺简介
根据原料、规模、产品方案的不同、回收工艺有所区别。总体上讲,针对铜、铅阳极泥有火法和湿法之区别,针对二次资源则除火法湿法之外还涉及拆解、机械和预处理工序。
1、铜阳极泥处理工艺
l 火法工艺
火法的传统工艺流程如下
铜阳极泥
H2SO4 硫酸化焙烧 烟气(SO2 SeO2) 吸收
稀H2SO 浸出 CuSO4 溶液 粗Se
浸出渣
还原熔炼 炉渣
贵铅
NaNO3 氧化精炼 渣滓 回收Bi Te
银阳极
银电解 海绵银 银锭
黑金粉
金电解 废电解液 回收铂、钯
金板 金锭
该流程的主要环节是硫酸化焙烧浸出分离,铜转化为可溶性硫酸铜,硒化物分解使硒氧化为二氧化硒挥发分离,含SeO2 和SO2 的气体由气管抽至吸收塔,SeO2被水吸收生成H2SeO3,并同时被在水中的SO2还原为粗Se。焙烧浸出得CuSO4和部分AgSO4硫酸碲溶液,用铜(片或粉)置换出含碲的粗银粉送银精炼。金、银富集在浸出渣中。还原熔炼主要用浸出渣加氧化铅或铅阳极泥合并进行,产出含金银的贵铅,然后贵铅经氧化精炼分离铅、铋和碲,浇铸为金银合金,经银电解及精炼,产出海绵银铸锭,银泥(黑金粉)电解得金,金电解废液回收铂、钯。该法的特点是回收率高,可达90%以上,对原料适应性强,比较适合规模处理,欧美和前苏联国家大多采用火法流程,流程的缺点是冗长,中间环节多,积压金属和资金严重,特别是规模小时更为突出,影响经济效益。除此之外,高温焚烧产生有害气体,特别是铅的挥发,产生二次污染,因此它的应用受到限制。
● 湿法工艺
20世纪70年代湿法流程迅速崛起,并得到国内冶金界的认可,下面做以简单介绍:
铜阳极泥
H2SO4 浸出铜 CuSO4溶液
乙酸盐 浸出铅 Cu、Pb溶液
HNO3 浸出银 AgNO3溶液 Ag
王水 浸出金 渣 熔炼 回收Sn
金溶液
萃取精炼
金粉
该法用不同的酸分段浸出阳极泥中的贱金属杂质,以富集金、银。用H2SO4先使铜成为CuSO4,以乙酸盐常温浸出铅,使铅生成可溶的乙酸铅(Pb(Ac)2)分离。浸出渣用硝酸溶解银、铜、硒、碲,含银溶液用盐酸或食盐沉淀出氯化银(AgCl),其纯度可达99%以上,回收率可达96%,再从氯化银中精炼提取银,用王水从硝酸石溶渣中溶解金,金溶液用二丁基卡必醇(DBC)萃取,草酸直接还原得金产品,金纯度99.5%,回收率可达99%。湿法工艺金银总回收率分别大于99%和98%。由于全流程金属分离都在酸性水溶液中进行,因此称为全湿法工艺,与火法工艺相比,有能耗低,有价金属综合利用好、废弃物少、生产过程连续等优点。
l 选冶联合工艺流程;
铜阳极泥
H2SO4 磨矿脱铜
浸出 CuSO4溶液
浸出渣
H2O 调浆
浮选 尾矿 炼铅
精矿
焙烧 焙炼 烟气 回收硒
银阳极 电解 银粉 银锭
黑金粉 电解 金板 金锭
该流程用于处理含铅高的铜阳极泥,流程包括阳极泥加硫酸磨矿及浸出铜,含金、银的浸出渣调浆进行浮选,选出的精矿进行苏打氧化熔炼产出银阳极,电解产出银和金粉等工序。流程中金、银回收率分别达到95%和94%。由于引入浮选工序,精矿熔炼设备规模为火法工艺的1/5,试剂消耗节约一半,减少了铅的污染,简化了后续熔炼过程,提高了经济效益。
l 天津大通铜业有限公司金银分厂阳极泥处理流程
成份
Cu Au Ag Pb Sb Bi Sn Ni As Te
15.64 2132g/T 15.94 9.95 20.17 1.32 0.92 0.40 7.30
流程
阳极泥
H2SO NaClO3(氧化剂)
稀酸浸出
控电位V420mv
炉渣 炉液
HCl H2SO4 NaClO3
V.1200mv金的控电氯化 沉Se Te
SO2 Cu粉置换
SO2 SeO2 溶液
炉液 NaClO3炉渣1200mv 回收得H2SeO3
粗Te CuSO4
尾液 Au粉 硒
草酸 二次金的控电氯化 浓缩结晶 尾液
炉液 炉渣
Au粉 尾液 硫代硫酸钠浸银
铸Au锭
炉渣 炉液
富集Pb.Sb 水含肼沉银
外销
尾液 银粉
银粉
银阳极泥
电解
电银 阳极泥 电解液
回收金
该流程设计上没有预焙烧工序,而是以浸铜时添加氧化剂(NaClO3),使阳极泥中Cu、Se、Te氧化成为CuSO4、H2SeO3和H2TeO3并转入溶液,在溶液中的H2SeO3用SO2还原得到粗Se。Te则用铜粉置换得Te精矿,CuSO4经浓缩得到结晶CuSO4.5H2O。浸出渣经二次控电氯化浸出金,一次浸出金用SO2还原,二次浸出金用草酸还原,金的回收率可达98.4%,控电氯化渣用硫代硫酸钠(Na2S2O3)浸银。硫代硫酸钠试剂毒性小,消耗少,反应速度快,适于处理含银物料,银的回收率可达99%,纯度达99%。
大通铜业有限公司的阳极泥含铅和锑比一般的铜阳极泥高,类似于铅阳极泥,因此所用的流程类似于铅阳极泥的氯化法流程,首先用FeCl3或HCl+NaCl溶液浸出铅阳极泥中的铜、砷、锑、铋及部分铅,同时有少部分银生成AgCl2-溶解,浸出液用水稀释至PH0.5,使SbCl3水解为SbOCl沉淀,同时沉淀出AgCl(沉淀率达99%以上),浸出渣用氨溶液浸出银,使转为可溶性的Ag(NH3)2Cl,再从溶液中用水合肼还原银,氨浸出渣用HCl+Cl2或HCl+NaClO3浸出回收金,区别在于金、银回收先后的选择问题,这需要视具体成分而定。
以上是处理各种阳极泥的几种典型原则流程,可根据处理阳极泥的成分进行不同的组合。
2、金、银基合金及双金属复合材料以及带载体的贵金属废催化剂的回收流程。
●金银合金和金属废品废料、废件的回收流程
含Au、Ag以及ΣPt的双金属废料废件
预处理
热分解400~600℃
硝酸浸出
难溶的残渣(Au、Pt、Pb等) 硝酸浸出液(含Ag及其它金属)
Cl
溶解 回收AgCl
残渣 溶液 AgCl 其它金属
硫化物SO2或NaSO3
沉金 粗Ag提纯
粗Au 溶液(Pt、Pb)
提纯
预处理可以是拆解或机械处理,热处理的主要目的是在400~600℃条件下去除有机物,以及低溶点的金属,然后用qN HNO3溶解,使物料中的银和其它贱金属氧化,以硝酸盐形式转入溶液,从溶液中回收银和提纯,硝酸不溶残渣,可以用王水或水氯化浸出或其它溶解金、铂和钯,从溶液中回收分离提纯Au、Pt和Pd。
黄金的提纯:粗金返溶解用二丁基必醇萃取金,反萃之后,再沉金,得到提纯。而含Pt、Pd溶液可用二烷基硫醚或N-二仲章基氨基乙酸(N540)萃取钯,达到与铂的分离,钯的萃取率可达99.5%,铂的萃取率几乎是零。有机相经水洗后用NH3.H2O反萃取钯,反萃取液再回收提纯钯。二烷基硫醚被认为是迄今为止工业上分离铂、钯最有效的萃取剂,它的唯一缺点是稳定性稍差,易氧化,萃取平衡时间稍长,萃取液回收铂。当然也可以用30%N540异戊醇+70%煤油萃取铂和钯分离。30%N540萃铂的条件4级萃取,1级洗涤3级反萃、铂的萃取率可达99.9%,4NHCl反萃,反萃率为99.95%,从反萃液中获得纯度为99.9%的铂产品。
对于铂、钯的分离提纯问题,传统的方法是反复沉淀法,水解沉淀法,硫化物沉淀,氨盐沉淀或离子交换分离。沉淀法的缺点,首先是分离效率不高,其次是周期长,回收率低,试剂消耗大、操作条件不佳麻烦。离子交换法,树脂饱和浓度低,用量大,交换彻底、交换时间长。萃取分离提取是近期崛起的分离方法,它的传播速度快,避开湿法冶金中最为繁杂的液固分离的问题,萃取剂可循环使用,流程相对简单,周期短,金属回收率高,纯化效果好的优点。因此被广泛应用。
● 以∑Pt为载体的催化剂回收流程
∑Pt载体有蜂窝状和小球状高溶点硅、铝酸盐,由于高温使用过程部分贵金属会向内层渗透,部分被烧结或被釉化包裹,或转化为化学惰性的氧化物和硫化物,因此他们的回收利用带有一定的难度。他们的回收必须经预处理富集阶段,然后再行分离提纯,预处理富集阶段分为:
▲火法富集法,高温熔炼以铁为辅收剂。碳作还原剂,加碳熔剂使载体转变为低熔点、低粘度炉渣,获得含富铂族金属的铁合金,后续酸浸除铁,获得铂族金属精矿。该方法的Pd、Pt回收率分别为99%,98%以上。也可以用硫化物(Fe2S,Ni3S2)作捕收剂,较低温度熔炼,获得冰镍后用铝活法化酸浸,获得铂族金属精矿。
▲载体溶解法:γ—Al2O3载体催化剂,经磨细用H2SO4.NaOH或NaOH+Na2SO3+联胺溶液直接溶解氧化铝,而贵金属全部富集在不溶解渣中。
▲再后续的分离提纯就可以接以上流程湿法部分,形成完整的流程。
网友评论
最新评论
收贵金属装置 .085 一种螺旋溜槽 .986 硝酸装置贵金属回收器 .187 制备4氨基二苯胺的方法 .388 便于分离和回收利用的贵金属纳米粒子的制备方法 .089 催化剂载体的选别处理方法 .X
资源,与高新技术产业有密切关系。但由于乱采滥挖,采用落后的池浸工艺,回收率不到30%,资源浪费严重,没有发挥综合利用的价值同时也带来环境污染。努力完善和全面推广原地浸矿新工艺、离子型稀土冶炼技术及设备,是离子
。由于引入浮选工序,精矿熔炼设备规模为火法工艺的1/5,试剂消耗节约一半,减少了铅的污染,简化了后续熔炼过程,提高了经济效益。 l 天津大通铜业有限公司金银分厂阳极泥处理流程 成份 Cu
2 一种铅阳极泥的处理途径及处理工艺 .473 银电解液除铋、锑的方法 .X74 环戊烯氧化法合成戊二醛的方法 .275 二氧化硫废气的净化处理方法 .276 高砷高硫金精矿脱除砷硫元素 .377 通过许多破碎/悬浮阶段从燃煤炉渣中回收